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ABSTRACT

We discuss and interpret a theory developed by Kreiss and others for

studying the suitability of boundary conditions for linear hyperbolic systems

of partial differential equations. The existing theory is extremely

technical.

The present discussion is based on the characteristic variety of the

system. The concept of characteristic variety leads to

(1) a physical interpretation of the theory in terms of wave propagation,

and

(2) a physical and geometrical method for visualizing the algebraic

structure of the system. The great complexity of the theory is caused by

certain aspects of this structure.

We also point out connections between the above work and a corresponding

theory regarding the stability of finite difference approximations.
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SIGNIFICANCE AND EXPLANATION

This paper is concerned with boundary conditions for linear hyperbolic

systems of partial differential equations in several space dimensions. For

various reasons, it can be difficult to determine whether a given boundary

condition is suitable for a given system. The existing theory which deals

with this issue is quite complicated and algebraic. In the present paper we

describe how this theory can be interpreted in terms of concepts associated

with wave propagation. We also mention connections with an analogous theory

regarding the stability of finite difference approximations.
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INITIAL-BOUNDARY VALUE PROBLEMS FOR LINEAR HYPERBOLIC SYSTEMS

Robert L. HiSdon*

1. Introduction.

In this paper we discuss boundary conditions for linear hyperbolic

partial differential equations in several space dimensions. Our goal is to

provide some interpretations and explanations of a theory developed by

Kreiss and others (e.g.. [101,[14],[151,[201.[211) for determining whether a

given set of conditions is suitable for a given equation. The theory is of

fundamental importance. However, it is extremely complicated, and its

physical interpretation is not immediately apparent. In the present section

we describe the context of the theory and outline the interpretations which

we will give regarding it. At the end of the section we point out some

relationships between this theory and the study of finite difference

approximations.

Examples of hyperbolic equations include the Euler equations of gas

dynamics, the shallow water equations, Maxwell's equations, equations of

magnetohydrodynamics, and the classical wave equation. Except for the wave

equation, these examples are systems of first-order equations. The first

three cases will be discussed in Section 4.

The theory to be discussed here deals with linear first-order systems.

Equations of higher order can be reduced to first-order systems by standard

techniques (e.g.. John [91, Taylor (261). Of the above examples. Maxwell's

equations and the wave equation are linear. The theory is applicable to

linearized versions of the others.

The unknown, dependent variables in the problems of interest are

functions of space and time, e.g., u - u(x.t) where x . Rn . The

spatial variable x is typically confined to a subdomain of Rn . For

example, a fluid may flow in a region which is bounded by a solid wall. In

other problems the spatial domain of interest may be bounded, at least in

part, by an open, artificial boundary. These boundaries are sometimes

*Department of Mathematics, Oregon State University, Corvallis, OR 97331
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introduced in order to limit the extent of a problem so that a n'merical

computation of the solution can be made feasible. This is the case with

limited-area problems in oceanography and meteorology. Another such

situation is the modeling of a fluid flow in an exterior domain.

In order to determine a unique solution to the problem, it is necessary

to specify values of the solution at some initial time, and it is generally

necessary also to impose conditions on the solution at the boundary. The

problem thus becomes an initial-boundary value problem (IBVP). In some

cases the correct boundary conditions can be found easily from physical

considerations. At a solid wall which bounds the flow of a fluid, for

example, one sets the normal component of the fluid velocity equal to zero

(if effects of viscosity are to be considered, the tangential component must

also vanish). In other situations the choice of boundary conditions is not

as obvious. This is the case with artificial boundaries, which do not

correspond to anything physical.

In general, it is necessary to be careful when choosing boundary

conditions for a hyperbolic system. This can be seen most easily in the

case of first-order systems in one space dimension, which we will discuss in

Section 2. There we will show that various portions of the solution

represent traveling waves. It will be apparent that any acceptable boundary

condition must prescribe the behavior of the waves which are coming into the

spatial domain, but is must not affect the waves which are leaving.

Examples of suitable boundary conditions include reflection conditions,

which describe incoming waves in terms of outgoing waves.

In several space dimensions the situation is more complicated than in

one dimension. In this case, it is not nearly as easy to identify

''incoming'' and ''outgoing'' components of the solution. There may also be

waves which move tangent to the boundary, and it may not be clear what a

boundary condition should say about them. These difficulties are among the

principal topics to be discussed in the present paper.

Because of the above problems, it may be difficult to determine whether

a given boundary condition is suitable for a given equation in several

dimensions. One approach to this question is given by the ''energy method''

(e.g., Friedrichs [4], Courant and Hilbert, vol.11 [31). This method gives
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criteria which are sufficient for a boundary condition to yield a well-posed

problem. i.e.. a problem which admits a unique solution depending

continuously on the prescribed data. (See Section 3.1 for a more precise

definition of ''well-posed".) The criteria are not necessary; if the

method fails to show that a boundary condition is acceptable, this may be

due either to a defect in the condition or a defect in the method.

An alternate approach yielding more precise information ("normal mode

analysis") has therefore been developed. The theory includes work by

Ireiss [101. Sakamoto [231. Rauch [211, Ralston [20]. Kajda and Osher [141,

and Nichelson [151 . The theory lives criteria which are essentially

necessary and sufficient for a boundary condition to yield a well-posed

problem.

The theory is extremely complicated and algebraic; its physical

meaning tends to get buried by lengthy and detailed studies of various

matrices. The principal purpose of the present paper is to examine this

work from the viewpoint of wave propagation. We will show that to a great

extent the theory has physical effects that one would expect from the

discussion of incoming and outgoing waves given above. The concept of group

velocity plays a major role in the discussion. The great complexity of the

theory is due mainly to the Fourier components of the solution which

correspond to waves traveling tangent to the boundary.

We now outline the contents of this paper. In Section 2 we review the

standard treatment of systems in one space dimension. In Section 3 we

describe the motivation which is usually given for the multi-dimensional

theory. Section 3 concludes with a literature survey.

The interpretations to be given here make extensive use of the

structure of the characteristic variety of the system, i.e., the

high-frequency part of the ''dispersion'' relation. In Section 4 we

describe this structure for some examples, and we point out that these

special cases model crucial features of more general systems. For the sake

of definiteness and clarity, the discussion in the remaining sections is

given in terms of the examples. In Proposition 4.2 (Section 4.4) we

describe a process by which incoming and outgoing modes are labelled

algebraically in the theory of well-posedness.

3
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In Section 5 we give some interpretations of the 'uniform Kreiss

condition'' (U.K.C.), the algebraic criterion which characterizes admissible

boundary conditions. This criterion is used to solve for "incoming"

components in terms of "outgoing" components and boundary data. In this

section, we also consider some weaker forms of well-posedness which are

encountered when the U.K.C. is not quite satisfied. In these cases there

are certain uniformities which do not hold as the frequencies of the Fourier

components of the solution tend to infinity, so that certain reflection

coefficients may tend to infinity.

In Section 6 we use the framework of Sections 4 and 5 to discuss some

of the main ideas in the proofs by [reisa and others which show

well-posedness of the initial-boundary value problem.

Sections 4,.5, and 6 form the core of this paper. The reader who is in

a hurry may find it worthwhile to skim lightly over Section 2 and Section

3.2.

The theory discussed here is closely related to a theory which deals

with the stability of finite difference approximations to initial-boundary

value problems. The stability theory includes work by Osher [18],[191.

Gustafsson, [reiss, and Sundstrom [5], and Nichelson 116]. Trefethen

[271.[29] has recently studied this work from the viewpoint of wave

propagation and has reached some conclusions which are analogous to some

ideas expressed in the present paper. From time to time we will point out

some similarities between the well-posedness theory and the stability

theory.

4
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2. Systems JA one sgac dimension

We now review the situation for systems in one space dimension. In

this case the problem of finding suitable boundary conditions is fairly

straightforward.

We consider the system

(2.1) ut M AuI + Cu ,

where u(z,t) is a vector having n components, and A(x,t) and C(xzt)

are n x n matrices. For simplicity, we assume that (2.1) is defined for

x > 0 and t ) 0. If a system is defined on a spatial domain with two

boundaries, e.g.. a ( z ( b , then each boundary can be treated separately

in the manner to be described below.

The system (2.1) is assumed to be hyperbolic, i.e.. A has real

eigenvalues and a complete set of real eigenvectors. This assumption

enables one to simplify the form of the system. It implies that there

exists a nonsingular matrix Q such that Q-1 AQ diag U1 .... n } .

The system (2.1) can then be written as

(Qlu)t - AQ)(Q7u) + (Q-1 c + Q - -'AQQI) U

or

(2.2) vt ( "' n v 1 + Dv

where v = lu

For the sake of simplicity, we first consider the case D = 0 . Under

this assumption each equation in (2.2) has the form

Ov aw

at ax

and is an ordinary differential equation for vj along the

characteristic curves defined by dx/dt -X. (See Figure 2.1) The

components vj are constant along the corresponding characteristic

................................. =.L i ........ i__ _tII [l



curves and can thus be regarded as traveling waves which move at the

characteristic velocities dx/dt - -XJ.

tt

A. <0 A >0
X j

Figure 2.1. Characteristics for (2.2).

Initial values for the ordinary differential equations for vj are

provided by the values of vj at t = 0 and also, when ( 0 ,

by values of vj at the boundary x = 0 . It is therefore necessary to

prescribe an initial condition

v(x,0) - f(x) , x > 0

where f is a given function, together with a boundary condition which

defines values for the vj corresponding to negative Xj , i.e.,

the incoming components of v . It is not permissible to prescribe values

for outgoing components at x = 0; otherwise, the boundary conditions

could contradict the effect of the initial condition and thereby make it

impossible for a solution to exist. The boundary conditions must therefore

fit the general form

(2.3) vl(ot) = Svll(0,t) + g(t) , t > 0

where vi and vII are vectors consisting of the incoming and

outgoing components, respectively. Here £ is a given function, and S is

a rectangular matrix of appropriate dimensions which governs reflections at

the boundary.

When D A 0 , the equations in (2.2) are coupled together. In this

case the existence of the solution can be shown via an iteration of Picard

6
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type. See, e.g.. Courant and Hilbert [3]. The boundary conditions must

satisfy the same criteria as before; it is necessary to prescribe values

for incoming components, and it is not permissible to prescribe values for

outgoing components. The identification of the incoming and outgoing

components depends only on the leading order part of the system, i.e., is

independent of D .

It is often of interest to know that the solution depends continuously

on the prescribed data f and g. In this case the continuous dependence

follows from the fact that solutions to ordinary differential equations are

continuous functions of their initial data. (Also see (3.5) and the

associated discussion)

Ii
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3. Motivai for th multi-dimensional theory

We now begin the discussion of problems in several space dimensions.

In this case it is generally not possible to construct and analyze the

solution by using characteristic curves. As noted in the Introduction,

additional problems may be caused by the possibility of waves moving tangent

to the boundary. One can therefore expect this case to be more complicated

than the previous one.

In the present section we describe the motivation which is usually

given for the approach developed by treiss and others for studying the

multi-dimensional case. In Section 3.1 we make some preliminary remarks,

and in Section 3.2 we derive a condition which is necessary for the problem

to be well-posed. In Section 3.3 we state a stronger condition which can be

shown to be sufficient. The effects of the stronger assumptions will be

discussed in later sections, mainly Section 5. The proof of sufficiency is

the main source of difficulty in the theory and bears little resemblance to

the derivation of the necessary condition. In Section 3.4 we survey some of

the literature which deals with the subject.

3.1 Preliminaries

A fairly general form for linear hyperbolic systems is

au
(3.1) Ut = Au 1 + 18 - + Cu + F

j=1 8yj
(Soe the examples in Section 4.) We consider this system for t ) 0 , and

for reasons given below we assume that the spatial domain is defined by

z > 0 and y a 0, where m 2 1. In (3.1) u(z,y~t) and F(x.y.t)

are vectors having n components, and A,Bj, and C are n x n

matrices which we assume to be smooth functions of zy, and t.

In the theory which has been developed, the system is assumed to be

either strictly hyperbolic or symmetric hyperbolic. In the former case the

matrices aA + I 0JB have real distinct eigenvalues for all real a.

*I, ... am for which orl + lii # 0 . In the latter case A and the



Bj are hermitian. (See Section 4.1 regarding ''symmetrizable" systems.)

The spatial domain [0.-) z IP has been chosen for the sake of

simplicity. If one is considering a system defined on a spatial region

which does not have this form but still has a smooth boundary, then one can

localize the problem with a partition of unity and then map each boundary

portion into the boundary of the half-space [0,m) . lim . In the new

coordinates the problem will have the form given above.

Since (3.1) is hyperbolic, the matrix A can be assumed to be diagonal

with real eigenvalues; otherwise one can find a similarity transformation

which makes it diagonal and then adopt the corresponding change of dependent

variable. In much of the theory A is also assumed nonsingular, i.e., the

boundary x = 0 is noncharacteristic. (cf. Section 4.3) Unless otherwise

stated, we will assume that this is the case and that the elements of A

are arranged so that A has the form

(3.2) A = All

where A' < 0 and Al l ) 0

In analogy with the one-dimensional case, we prescribe an initial

condition

(3.3) u(xyO) = f(xy)

where f is a given function, together with a boundary condition of the

form

(3.4) u'(0,yt) = S ull(0,y,t) + g(y.t)

Here g is given function, S is a rectangular matrix, and
u - ((ul)T , (uII)T)T . The components of u and uI l correspond to

the blocks AI and Ali , respectively, in (3.2). Some remarks

about the form of (3.4) are given at the end of Section 5.1.

The problem at hand is to determine whether the boundary condition

(3.4) is appropriate for the system (3.1). In the one-dimensional case the

9 I



answer is obvious, but in the present case it may be necessary to place some

restrictions on the matrix S . The effect of the theory being described

here is to identify restrictions which are necessary and sufficient for the

initial-boundary value problem to be well-posed.

By ''well-posed'' we mean that for arbitrary F.fog in suitable

function spaces, the problem (3.1), (3.3). (3.4) admits a unique solution,

and, furthermore, it is possible to estimate the solution in terms of

F.f,i. The latter condition is equivalent to the continuous dependence of

the solution on the prescribed data. A typical estimate (''energy

estimate'') has the form

I(llU xotj + Ilull8x[ot] + Ilu(t)IlI

< K (llfII + IlSllazx[ot] + IIFII.[otj ),

where K is independent of uf,F, and I (e.g.. Majda and Osher [14],

Rauch [21]). Q denotes the spatial domain x ) 0 , and the norms are

weighted L2  norms or Sobolev norms on the regions indicated by the

subscripts. See also the estimate (5.25).

3.2. A necessary condition for well-posedness,

We now develop the necessary condition which was mentioned in the

introduction to Section 3. This condition is based on certain families of

exponential solutions of the differential equation which cannot possibly

satisfy the energy estimate (3.5). or any similar estimate. If these

functions also satisfy the boundary conditions, then they are solutions of

the initial-boundary value problem (IBVP), and the problem must be

ill-posed. It is therefore necessary to guarantee that the boundary

conditions exclude these functions.

The necessary condition is similar to the Godunov-Ryabenkii criterion

for the stability of finite difference approximations. (See, e.g.. [5],[22],

or [28]).

In order to obtain the special solutions, we assume that C - 0 , A,

Bi and S are constant, and F g 0 . The IBVP (3.1). (3.3). (3.4)

10
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is then

(a) u An + I B u o 0, y a Rm . t ) 0

ayj

(3.6) (b) u(x.y.O) - f(xy)

(c) uI . SuI I  , X = 0

The solutions of interest ('normal modes") are elementary waves

having the form

(3.7) u - 4(x) •ie'y + st,

where w s Rm  and s is complex with Re s ) 0 . Nodes of this

type are associated with Laplace az.4 Fourier transforms (see Section 4). but

we will not need to use these transforms at the present time. In fact,

their use would introduce unnecessary complications.

If det A A 0, (3.6)(a) can be written as

(3.8) u. = A-1 (ut  B on

yj

When (3.7) is substituted into (3.8) , the result is an ordinary

differential equation for the amplitude function:

(3.9) 4'(x) - A-l(sI - j iuw B) 4

- M(w,s)4

The solutions of (3.9) will be discussed extensively later. For the moment

it suffices to say that there are certain solutions which decay

exponentially as x - + w and others which grow exponentially. We also note

that for any solution u of the form (3.7), the related functions

(3.10) u0 (x,y.t) a(lz) *i0w'y ast

are also solutions of (3.6)(a), for all real a.

11



A necessary condition for well-posedness is implied by the following

Proposition:

Pronosition .. Suppose that for some s with Re a ) 0 and some

w a 1 . there is a function u of the form (3.7) which satisfies

the following:

(a) 4 0 0 , and 4 decays exponentially as x a + ; and

(b) u satisfies the boundary condition (3.6)(c), i.e..

(3.11) uI . Su I I  for x - 0

The IBVP (3.1), (3.3), (3.4) must then be ill-posed.

Proof, (3.11) implies that the corresponding u. also

satisfy the boundary condition, since (3.11) is equivalent to 41(0) -

S#II(o). The u5 are thus solutions of the IBVP (3.6), which

is a special case of (3.1), (3.3), (3.4). We also note that the n

have finite norm with respect to x

We now show that the family Cus: a ) 0) violate# the energy

estimate (3.5). As a -+m , the solutions un grow at

arbitrarily high exponential rates in t . since Re a ) 0 . Equivalently,

the left-hand ride of (3.5) is an exponentially Increasing function of a.

This is not the case for the right-hand side. In this case F and g are

zero, and the initial values are

fa (z.y) - 4(ax) •i w y.

Sobolev norms with respect to x and y introduce derivatives which cause

polynomial growth in a , but this is the most that can happen on the

right-hand side. By taking a sufficiently large, we can therefore

conclude that no constant K in (3.5) is adequate. The definition of

well-posedness given earlier is thus violated.

Hersh (61 has pointed out that the failure of the energy estimate

implies that existence and/or uniqueness must also fail to hold. His

12



argument is based on the closed graph theorem.

A crucial part of the above argument is the fact that F and g are

zero. If F and g are large whenever the solution is large, then there

is no problem. But in the case considered here, it is possible for large

solutions to appear without sufficient provocation from the prescribed data.

One may object that the u. do not have finite L2  norms or

Sobolev norms with respect to y and therefore would not have to satisfy

(3.5). This problem can be remedied by truncating the u. . Let 'P
be a smooth function of y which is equal to I for lyi _ I and is equal

to zero for lyI 2 2 . and consider the functions

uQx(z.y't) = 0p(-)ua = ,(( e a y + at

for ) ) 0 . These functions satisfy an inhomoSeneous differential

equation and homogeneous boundary conditions. The failure of the energy

estimate is shown by letting (lpX + . We omit the details.

The ideas in the above proof, aside from the truncation in y . have

been credited to Agmon. (of. Kireiss [10J. Agmon [1])

The function 4 of Proposition 3.1 is often said to be the solution

of an eigenvalue problem with eigenvalue a, since it satisfies

d#s6:A- + N ijB j)
dx

(3.12) 41(0) - S611(0)

4 12(0,_)

The third condition may be regarded as a boundary condition at infinity.

Proposition 3.1 can then be stated in the following manner:

Proposition 3V . The IBVP (3.1), (3.3), (3.4) is ill-posed if, for

some w a SP, the problem (3.12) has an eigenvalue s with Re s > 0.

We will later formulate this Proposition as an algebraic criterion

which is necessary for well-posedness, but we must first characterize the

solutions of the system (3.9).

13



The basic theory of ordinary differential equations irplies that (3.9)

has a linearly independent solutions 61....#n which span the

set of all solutions of (3.9). The dican be taken to have the form

(3.13)(a) #(a) e KE W

where K is an *igenvalue of M(w.s) and w is a corresponding

olgenvector, or

(3.13)(b) 4(1) -e KXP(x)

where P is a polynomial having vector coefficients. The latter form

arises when K is associated with a nontrivial Jordan block. The degree of

P is less than the algebraic multiplicity of K . and P(0) is a

generalized sigenvector. We will not denote explicitly the dependence of

,w, and P on s and v .

The 4j give rise to exponential solutions of the partial differential

equation (3.6)(a) via the relation (3.7). u 4(x)eiW*y + St. These modes

will be denoted by

u ;x~y~t) *(x)eiw~y + at

(3.14) {KX +i*y + St w

or oeK + iwmy + at PK

We are interested in solutions of this type which have finite L2norm

or Sobolew norms with respect to x on the interval 0 ( x ( .

Information about these modes is given by the following Proposition due to

Hersh [61. Analogous properties of finite difference equations are given in

Leas 5.1 sad 5.2 of Gustafason, Kreiss, and Sundstrobm [SI.

Propositin 1,2,, Let t. denote the number of negative sigenvalues of

A. If Is a 0. then the matrix N(w.s) A71(sI l io B)

14



(see (3.9)) has Z eigenvalues K with negative real part and n -

eigenvalues with positive real part.

Proof. We first note that there are no purely imaginary eigenvalues

when Re s > 0; if K - iq were an eigenvalue, then

iow A-1 (sI - iwjBj)w ,

for some vector w 0. and therefore

(iqA + liwjBj)w - sw

But s would then have to be purely imaginary, since the system is

hyperbolic.

Let s + i+;. We are interested in the signs of the real parts of

the eigenvalues of N(ms) on the domain n > 0. C e R. w a Rm .

The eigenvalues are continuous functions of RE. and w, so the

real part of each eigenvalue must have a constant sign on the domain;

otherwise there would be sets on which Re K - 0 for some K . We can

therefore count the signs at any point which may be convenient. If il = I.

E = 0, and w - 0. then K - A71. In this case the claimed counting

is correct, and the Proposition follows.

-The Proposition implies that t of the functions in (3.13)

have finite norm on the interval 0 ( x ( - . The same is true of the

solutions uj in (3.14), for fixed y and t. Arrange indices so that

these functions are o and u.... u

We can now formulate an algebraic condition which is necessary for

well-posedness. According to Proposition 3.1, it is necessary to prevent

certain solutions u of (3.6)(a) from satisfying the homogeneous boundary

condition (3.6)(c). The solutions of concern are linear combinations of

u1 .... ut, and the corresponding 4's are linear combinations of

1 .... #i.
The boundary condition (3.6)(c) can be written as

15



[I.~8iu~ 1  -0. for z - 0

For the solutions of interest this condition hss the form

(3.15) [U. -SJ1u15 ... ui c -0 for x - 0.

where c. is an I. - vector whose components are the coefficients In the

linear combination. The representation uj - *(z)eiw'y * at (see (3.14))

implies that (3.15) is equivalent to

(3.16) [I, -SJ[41 (O) .... 61(O)J a - 0

The linear independence of 41 .... 4t implies that a linear

combination of ui,... ut is zero if and only if c - 0. We therefore

want (3.16) to have no nonzero solutions c. which means that the matrix

(3.17) NNw.s) -[.S[(O..4(0)]

must be nonsingular.

We should note that N(u~s) is square; the number of rows in the

boundary condition (3.6)(c) is equal to the number of negative eigenvalues

of A. which is Z. . (See (3.2).(3.4). and Proposition 3.2.) We also note

that N really does depend on a and s; according to (3.13) and the

associated explanation, the vectors 4()..690 are eigenvectors

and generalized eigeavectors of MNus). They correspond to the

eigenvaluea which have negative real part. For an example of N(u,s), see

(5.23).

From the above discussion we can conclude the following:

Proposition ILL A necessary condition for well-posedness is that

(3.18) dot NNw~s) 0 0

16



for all a a 0 and all complex s with Re s ) 0.

3.3. TIM sufcin condition

We now introduce a stronger version of (3.18) which can be shown to be

sufficient for vell-posedness. The stronger condition is a uniform version

of (3.18), and in at least many cases, it amounts to a requirement that

(3.18) hold for Re s ) 0, rather than just for Re s ) 0. The effects of

the stronger assumptions will be discussed in later sections.

In order to state the sufficient conditon, it will be necessary to

introduce some normalizations. For any (w,s) with Re s ) 0. choose a

basis for the . - dimensional vector space of decaying solutions of the

system 4 = M(w,s)4 (i.e.,(3.9)), and from this basis produce a

new basis which is orthonormal at x = 0. For example, one could choose the

particular functions *l*... 4 discussed earlier (see (3.13) and

the-discussion after Proposition 3.2) and then perform the Gram - Schmidt

orthogonalization process on the initial values #1(0).... #Z(O).

We have noted that these initial values are eigenvectors and generalized

eigenvectors of M(w,s). For reasons given below, we will not limit

attention to the particular basis 41.... k .

Denote the orthonormal initial values by N.s).

and let

(3.19) N(u,s) = [I.-S][i 1w.s) .... 9(. s)I

(cf.(3.17)). The sufficient condition is the following:

Uniform Kreiss Condition (U..C.). There exists 6 ) 0 such that

(3.20) Idot N(w.s)l 2 6

for all a C R and all complex s with Re a > 0.
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This is essentially the formulation used by Majda and Osher [141 and

Michelson [15]. An alternate formulation will be discussed later. We make

several comments regarding the form of (3.20):

(1) The earlier, necessary condition (3.18) did not involve any

normalization of the vectors 41(0) .... 6AO), but some sort of

normalization is necessary if the uniform condition (3.20) is to hold.

Otherwise, we could replace j with 'j. with s small.

(2) The U.K.C. does not depend on the choice of orthonormal basis

(W. s) .... (of$). If P 1 .. tP is another such basis, then

....- [4.... P ]Q.

where Q is an Z x Z matrix. It is easy to check that Q is unitary.

Then,

Idet([I,-S] [P 1 .... j])I = det([I,-S][P1 .... P2 ]Q)i

- Idet(NQ)I = Idet NI - Idet Q1

-Idet NI

(3) It would suffice to impose (3.20) merely for IwI2 + 1512 -

'and Re a > 0); in each direction in the (e,s) space it is possible

to choose vectors 1Pj(w,s) which are homogeneous of degree zero in

(*,s). For example, this can be accomplished by observing that

MC.,s) - A-l(sI - ItwBj) is homogeneous of degree one and that solutions

of 4z = N4 can be written in terms of solutions for 1.12 + 1.12 - 1

by scaling x appropriately.

(4) The UKC applies to systems which have variable coefficients. For

such systems the matrix M(wa) is also a function of (x,y.t). In this

case the above analysis is applied to the constant-coefficient problems

obtained by freezing coefficients at boundary points (0,yt), and the U]C is

then required to hold uniformly in (y.t). The calculus of

pseudo-differential operators is used extensively in the treatment of

variable-coefficient problems. (See Section 6).

We now discuss an alternate formulation of the U.K.C. The earlier
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condition (3.18),. dot N(u.s) 0 0 for Re s ) 0. is equivalent to

requiring dot N(u,s) 0 0 for Re a > 0. This follows easily from

a change-of-basis argument which resembles that of comment (2) above. We

now show that in many cases the U.K.C. is equivalent to requiring

dot N(us) # 0 for Re s 2 0, not just for Re a ) 0. The U.K.C. is often

described in this manner (e.g.. in [51,[1]).

The equivalence will follow from some continuity arguments. In at

least many cases (see Section 6). it is possible to choose the basis vectors

so that they are piecewise continuous functions of (*,s).

The continuity makes it possible to extend the definition of N(Nos) to

Re a - 0. We note that the description of N(w,s) given earlier is not valid

in this case; when Re a = 0 the system 41 U M6 does not, in general,

have Z linearly independent solutions which tend to zero as x - + 

(cf. Proposition 3.2 and Section 4.3). The equivalence mentioned above now

follows from the piecowise continuity of N(ws) and the compactness

of the set ((*,s): 1012 + 1s12 _ 1. Re a 2 0).

3.4 A survey &L some of th literature 2a the subect.

Hersh (61 studied first-order hyperbolic systems which have constant

coefficients and which are defined on a half-space. He showed existence and

uniqueness of solutions subject to the condition (3.18). Solutions were

constructed via Fourier transforms and Laplace transforms.

Kreiss [101 used an approach which is applicable to

variable-coefficient problems defined on arbitrary spatial domains having

smooth boundaries. Here the main idea is to construct a "symmetrizer' , a

pseudo-differential operator which enables one to obtain the necessary

energy estimate. This is the approach which will be discussed later in this

paper. The construction is based on the condition (3.20). [reiss assumed

that the system is strictly hyperbolic and that the matrix A in (3.1) is

nonsingular, i.e., the boundary x - 0 is noncharacteristic. He also

assumed that the initial data are zero.

Sakamoto [231 obtained analogous results for scalar hyperbolic

equations of higher order.
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Ralston [20] provided an alternate method for treating some technical

points in Kreiss' construction. His work extends [reiss' results to systems

having complex coefficients.

Ranch [21] considered the case of nonzero initial data and proved

regularity estimates for the solution.

Majda and Osher [14] generalized the theory to the case where the

boundary is "uniformly characteristic". This means that the matrix A -

A(x,yt) in (3.1) has constant rank ( n for all (x,y,t) in a neighborhood

of the boundary x = 0 . They assumed that the system is symmetrizable

hyperbolic.

Michelson [151 used a theory of analytic matrices to simplify some

aspects of the uniformly characteristic case.

Strikwerda [25] studied "incompletely parabolic'' systems from a point

of view which is similar to that of Kreiss, et.al.

Sarason and Smoller [24] used methods of geometrical optics to study

the behavior of hyperbolic systems in spatial regions with corners. They

considered the case of rays which are not tangent to the boundary.

NaJda [131 used Kreiss symmetrizers to study the linearized stability

of multi-dimensional shock fronts.

The well-posedness theory discussed here is closely related to a theory

for the stability of finite difference approximations to Initial-boundary

value problems for hyperbolic systems. Gustafsson, Ireiss, and Sundstrdm

[5 showed that a condition analogous to the U.K.C. implies the stability of

difference approximations in one space dimension. Osher [18], [19] had

earlier used different techniques to obtain stability results for a

restricted class of methods. Michelson [16] has obtained results for

dissipative approximations in several dimensions when the boundary is

noncharacteristic and the initial data are zero. A more extensive survey of

the literature is given by Trefethen [27].
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4. Calm.teiAsatiolali qI± x sAmpl.

In this section we discuss various matters related to the
sohkaraoteristic variety" of the system (3.1). The discussion will Sive

useful information about the nature of the well-posedness theory and its

physical interpretation.

Before we proceed, we must perform some transformations on the IBVP

(3.1). (3.3). (3.4). Through a process described at the beginning of

Section 5.2, the effects of the initial data can be incorporated into the

forcing term F. We thus assume f - 0. We also assume that C - 0 and

that the coefficients are constant. (See the comments after (4.8)) We now

apply a Fourier transform In the tangent variable y. with dual variable

I*.. and a Laplace transform in t, with dual variable a t~+ iF (n~ 0).

The latter transform is defined by

(4.1) Lw(s) - f e-"tv(t) dt.
0

Under the above transformations the system (3.1) becomes

su~z~..s) i + i(*jBJ^ + Pkz,W,s)[

Here we used the fact f - 0. The IBVP can then be written as

(a)ii- (*,*)^ - A71 9 x ) 0

(4.2)

Mb U-1(0,ws) S 5ill + vs)

where

(4.3) M(u~s) - A71sl - (JJ

It may not be apparent why one would use transforms in (y.t) rather

than, for example, In (z.y). This question will be discussed at the

beginning of Section 4.3.
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For later reference, we show that the use of Laplace and Fourier

transforms enables one to express solutions of (3.1) as superpositions of

elementary wave-like solutions. The Laplace transfor (4.1) of a function

w is the same as the Fourier transform of the function

WOt O -Atw(t) ,t > 0

0 t ( 0

The factor e- At  is inserted to ensure integrability. The

application of an inverse Fourier transform shows that w(t) is a

superposition of modes eviteiEt - est. where A is fixed.

The Fourier transform in y introduces an additional oscillatory factor

exp(iw'y). Furthermore, the solutions of the inhomogeneous system

(4.2)(a) are based upon factors exp(Kx) for various eigenvalues K of

M(ws). (Se Section 5.2) The solutions of the partial differential

equation are thus built up from modes

(4.4) OK I + iw'y + st

These modes will be discussed extensively later.

The normal modes (4.4) were also used in the discussion of the

necesaary condition in Section 3. However, we deliberately avoided

superimposing such modes in order to avoid unnecessary complications.

We now describe the main topics to be discussed in the present section.

Definition The characteristic variety of the system (3.1) is the set

of all e ajRo w s] m , &a IR such that

(4.5) det[I - (cA + ujB)] = 0

The matrix function aA + a Uj Bj is commonly called the
Oprincipal symbol" of (3.1). Some remarks in Section 3.1 imply that if

the system is hyperbolic, then the symbol has real eienvalues and a
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complete set of eigenvectors. In general, A and the Bj may depend
on (z,y,t), and thus the characteristic variety may also depend on (xy,t).

A typical relation (4.5) is graphed in Figure 4.1 in Section 4.2.

There are a couple of reasons why the relation (4.5) is relevant to the

study of well-posedness. First, a topic of major interest in the theory is

the structure of the matrix M(w,s) in (4.3). For reasons to be discussed

later, a particularly important topic is the behavior of M(w,s) as

Re s + 0. This is already suggested by the manner in which the necessary

condition (3.18) is strengthened by the U.K.C. (3.20). For the moment let

us consider the limiting case M(*,iF). If ia is a purely imaginary

eigenvalue and z is a corresponding eigenvector, then

(4.6)(a) iaz A-1 (iE - i jBj)z,

or

(4.6)(b) Ez - (aA + I WjBj)z.

The point (u,w,E) must satisfy the relation (4.5). The characteristic

variety will thus enable one to visualize the behavior of M(u,s) as

Re a - 0. The relations (4.6) may be compared with the conclusions of

Proposition 3.2.

A second reason for studying the characteristic variety is that it is

related to the physical phenomenon of wave propagation. Suppose that (3.1)

has cbnstant coefficients and that C = 0 and F = 0. so that (3.1) is

on
(4.7) ut M Aux + IB j-

If a plane wave solution

(4.8) z ei(61 + uay +t)

is inserted into (4.7). where z is a vector, the result is (4.6)(b). The

characteristic variety thus describes the set of all wave numbers and

frequencies of plane wave solutions of (4.7).
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This analysis is approximately valid in more general cases if the

frequencies are sufficiently large. When C # 09 one obtains the equation

-z - (aA + 1 w B )z + Cz

instead of (4.6)(b), but the effects of C are small for large o.", .

Also, in the case of variable coefficients the coefficients appear nearly

constant to a wave whose frequencies are sufficiently high.

One may object that the mode (4.8) does not satisfy the homogeneous

initial condition used to obtain (4.2)(a). This issue is settled by the

discussion appearing in Section 5.2.

In the theory of well-posedness one actually encounters the modes (4.4)

rather than the modes (4.8). However, the relations between the two cases

are of major interest and will be discussed extensively later. (See

Proposition 4.2 and Section 5.3)

We now outline the contents of the remainder of this section. In

Section 4.1 we give some examples of first-order hyperbolic systems. In

Section 4.2 we discuss the structure of the characteristic variety for

systems like those mentioned in Section 4.1. In Section 4.3 we use the

characteristic variety to describe some properties of N(w.i,), and we

point out that the examples model some crucial aspects of the behavior of

more general systems. A major point of interest in Sections 4.2 and 4.3 is

the problem of identifying the incoming and outgoing portions of the

solution. In Section 4.4 we discuss the manner in which these portions are

labelled algebraically by certain processes appearing in the theory of

well-posedness. Some of the content of Sections 4.2 and 4.3 has already

appeared in [7J.

4.1 Exaple A L first-order hmerbolic sstems

In this sub-section we list the shallow water equations, the

two-dimensional isentropic Euler equations of gas dynamics, and Maxwell's

equations.

The shallow water equations can be written in the form
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Ut + utI + VUy + 6 - 0

(4.9) vt + uvz + VVy + 6y W 0

6 t + 14) z + 1#V y M 0

(For a derivation see, e.g., Courant and Friedrichs [21, Whitham [311.)

This system describes the motion of an incompressible fluid when the fluid

is bounded below by a solid boundary and its depth is small relative to a

typical horizontal length scale. In (4.9) u(x.y,t) and v(z.y,t) are the

horizontal components of velocity and 6 is the geopotential; i.e.,

4 gh(zty,t), where g is the acceleration due to gravity and h is the

height of the free surface. Coriolis effects can be included in (4.9) by

adding the terms -fv and fu to the left sides of the first and second

equations, respectively.

The system (4.9) can be written as

(4.10) qt + 0 u 0 q, + 0 v 1)y 0.

( 0 u )(0 6

where % _ (u,v.)T. If we pre-multiply (4.10) by the diagonal matriL

diaS (4.4,1). the result has the form

Aoqt + Alq1 + A2qy - 0,

where the A are symetric and Ao  is positive definite. (4.10)

is therefore a "symmetrizableo hyperbolic system (e.g., Friedrichs [4].

John [91).

The system is nonlinear and thus not covered by the well-posedness

theory which is the subject of the present paper. However, the theory is

applicable to the linearized version of the system. To obtain this version.

suppose that q - (uv.,)T and q + q' - (u + u', v + v'. 4 + 4 )T

are solutions of (4.10). and suppose that the perturbations u'.vl.#'

are small. If we substitute q + q' into (4.10) and neglect terms
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which are quadratic in the perturbation, the result is the following linear

system for q':

(4.11) q't + 0 u 0 q' + 0 v q'y + Dq' 0

(6 0 u )(0 6 v

The matrix D involves various derivatives of uv,p; and if the system

(4.9) includes Coriolis effects then the parameter f would also appear in

D.

We now transform (4.11) to a symmetric system. We first note that

(4.11) is symmetrizable in the same sense that the nonlinear system (4.10)

is symmetrizable. This would yield the form (3.1) discussed earlier, with

A and the Bj symmetric, except that the time derivative would have a

coefficient matrix which is not the identity. In order to avoid this

coefficient, we introduce a change of variable. Let Q = diag (4. /, Ii,

and note that

u ) Q-' = 0 u 0

0 0 u 0 u /

A similar conclusion can be reached about the coefficient of q' y. The

system (4.11) can therefore be transformed to

(4.12) wt + 0 U wx + 0 v /f )y + Ew a 0.

0 u 0 v

where w = Qq' = (u' . v' 4 , 4). The coefficient E is different

from the coefficient D in (4.11) because of some derivatives of Q which

are encountered during the change of variable. The quantity 4 v'- is
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the speed of gravity waves in shallow water and will be denoted below by c.

The two-dimensional isentropic Euler equations of gas dynamics have a

structure which is similar to that of the shallow water equations. The

Euler equations are

1 ap
ut + uux + vuy M - -x

1 8p

(4.13) vt + uvx + vvy . . .
p Dy

Pt + (Pu)x + (pu)y W 0

p - p(p)

Here u(xy,t) and v(xy,t) are the x- and y-components of velocity;

respectively; p is the density of the fluid; and p is the

pressure. (4.13) can also be written asIo dpo0 0
F WP 1 dp

(4.14) qt +  u 0 qx + 0 V dP : - qy = 0

p 0 u 0 p v

where q - (u.v,p)T. The system (4.14) can be synmetrixed by
pre-multiplyinS by the diagonal matrix diag (pp, p dp) . if dp ) 0

this matrix is positive definite, so that (4.14) is symmetrizable

hyperbolic. From now on we will assume R > 0; in many situationsdp>0;imaystain
p - [pT, where y and K are constants and y > 1.

The system (4.14) can be linearized and then symmetrized to produce a

form like that of (4.12). This process yields

/u 0 c /v o00
(4.151 ) t + u 0) w1  0 v v/ Wy +Ew=0

a 0 u 0 c v

cc

Here w = (uv , ()p,)T. where u' and v' are the perturbations in
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the velocity components, p* is the perturbation in the density. and

c P! The latter quantity is the local speed of sound.

The above discussion implies that the linearized shallow water

equations and the linearized Euler equations can each be written in the form

(3.1) discussed earlier,

(4.16) wt w Aw. + Bw +COw,

where in this case

AW.( 0 E) 0B=c (

and C - -E. An analogous form can be obtained for the Euler equations in

three dimensions.

For later reference we discuss briefly the relation (4.5) for the

system (4.16). The principal symbol of (4.16) is aA + *B. and its

eigenvalues are

- (U. v) *r. W) - -u@ - v"

20 3 -- (u~v)*(a,w) ± c(c
2 + 02 )1/2

A typical relation (4.17) is graphed in Figure 4.1. The eigenvectors

corresponding to the eigenvalues &12,''3 are

(4.18)

z2z (±ffo ±N (a 2 + W2)1/2)T

We now discuss Maxwell's equations of electromagnetism. These are
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/p

(a) div E --

t o

(b) div B - 0(4.19)
DE

(C) - = ¢2(curl B - pol)
at

aB
(d) -- - curl E.

at

where E is the electric field intensity, B is the magnetic induction,

p is the total charge density, 3 is the current density, c is the speed

of light, and so  and Po are constants. E,B and I are vectors

having three components.

In certain situations the system (4.19) can be simplified by deleting

the first two equations. The reason is the following (e.g., Lorrain and

Corson (121). If we take the divergence of (d). the result isa
(div B) - div curl E - 0. If at each point in space div B = 0

at some time, then (b) follows from (d) and may be omitted. Similarly.

equation (c) implies y (div E) c2po div J = c2Po ap/at 1 e ap/at,
(C )-1/2. P0

since a - (S P) 1  . Thus div E and s differ by a constant at

each point in space. If for each point they are simultaneously zero at some

time, then equation (a) is a consequence of (c) and may also be eliminated from

the system.

*Under the above conditions Maxwell's equations reduce to the form

(4.20) a(E).(0 c2 curl E +
4.20) B - curl 0 B

We now show that this system is hyperbolic. If the spatial variables are

denoted by (1-y) - (zPyly 2), as in (3.1). then the curl operator

in (4.20) has the representation(0 0 i, 0(0 0o -1o0
a a a

0 0 -1 + 0 0 0 1 0 0
0 1 0-1 0 0 aY1 0 0 0 y2
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It follows that (4.20) is symmetric hyperbolic if c 1. If a A 1 the

symmetric form can be obtained by replacing E with c-lE and t with

at.

The principal symbol of (4.20) will be of interest in later

discussions. A calculation shows that its eigenvalues all have multiplicity

two and are Liven by

(4.21) o &4 C(a2 + 1012)1/2

5' &6 -_G(0
2 + 1.12)1/2

Here O,wl,w 2  are dual to x,yl,y 2 , respectively, and I1w2 _ 012 + 022.

The components of the corresponding eilenvectors are rational functions

of the quantities a,6)1,02 and (a2 + lw12)1/2.

4.2 Structure 21 the characteristic varietv aroun velocity.

In this section we discuss the structure of the characteristic variety

and how this structure is related to the problem of identifying the incoming

and outgoing portions of the solution. As suggested in Section 1. the

latter question can be of fundamental importance in the study of

well-posedness of initial-boundary value problems.

A typical relation (4.5) is graphed in Figure 4.1. This is the

characteristic variety for the linearized shallow water equations and the

linearized two-dimensional Euler equations. (See (4.17)) The plane

corresponds to the eigenvalue EI' and the cones correspond to 2

and 3" The cones are right circular cones if and only if the plane is

horizontal. We let R denote the double cone and F denote the set of all

(w.&) which correspond to points on Q.
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(dual to t)

r

WI

I I

(dual to x)

(dual to y)

Z'I,

wI

(a) Characteristic variety (b) Projection onto (w.c) space

Figure 4.1

The characteristic variety for Maxwell's equations (4.20) has a similar

structure. In this case each determination of is a function of three

variables (a,el,u2). and each such & has multiplicity two.

The smallest eigenvalue is zero and would thus correspond to a horizontal

plane in Figure 4.1(a).

As noted in the introduction to Section 4. the relation (4.5) describes

the set of all (ve,*,) in wave-like solutions

(4.22) *i( ez + u*y + ct)

of the system (4.7), which is a special case of (3.1). In the current

discussion we are particularly interested in the directions in which these

waves propagate. In order to deal with this question, we first make some

remarks about the concept of group velocity as it applies to the present

situation. We then show how incoming and outgoing portions of the solution
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can be identified directly from graphs like Figure 4.1(a).

This discussion will be a description of solutions of (3.1) when C - 0

and the coefficients are constant ; and for sufficiently high frequencies

it will be an approximate description of the general case, where C may be

nonzero and the coefficients may depend on (x.y,t). (See the introduction

to Section 4.) At the end of this sub-section we relate this discussion to

the theory of propagation of singularities, which provides a rigorous

treatment of the more general case.

For each fixed t, the individual mode (4.22) is constant along lines

in the (x.y) plane for which (zy)(orm) is constant. It then

follows that the wave propagates in the direction (Uw) with phase speed

_&02 + lw2)-11 2 . However, when one superimposes various waves of the

form (4.22). the net effect is to produce a solution in which energy is

propagated with a velocity which may be different from the phase velocities

of the individual waves. This velocity is the group velocity, and in the

notation of (4.22) it is given by

(4.23) grad(-&) 8 &

Group velocity and phase velocity differ, for example, in wave groups

which propagate in one dimension and which are 'dispersive'. i.e., the

phase velocity varies with wavelength. (e.g., Whitham [311) In

multi-dimensional problems the two velocities may also differ for reasons

which are not related to variations in wavelength. This effect can be seen

most easily in the case of the simple equation

(4.24) ut + ux + uy = 0

The solutions to this equation are constant along characteristic curves for
dx dy

which .= . 1. and they thus represent translations in the (1.1) direction.

However, when one substitutes a wave form (4.22) into (4.24). the result

is & - -a-w. and by choosing (6,.) appropriately one can obtain a wave-like

solution having a phase velocity which points in any desired direction.

This direction cannot be meaningful because of the translatory nature of

(4.24). In fact, suppose that a family of such waves is superimposed by the
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Integral

foi(Ox + wy - (a+w)t) f(r,.) dtdW,

where f is an amplitude function. This integral can be written

fei[ O(x-t) + W(y-t)] f(aow) da dw

= f(x - t, y -0

where f is the inverse Fourier transform of f. The individual waves can

move with phase velocities having any direction whatever, but the waves

superpose to produce a simple translatory effect. In this case the group

velocity is , - ) = (,I), which is the direction of translation.

Some interesting applications of the concept of group velocity are

found in the study of finite difference approximations. See, e.g.,

Trefethen [271, [28] and Vichnevetsky and Bowles (301.

We now relate the directions of the group velocity to the structure of .
the characteristic variety graphed in Figure 4.1(a). In this particular

example there are three determinations of & as a function of (0,W).

The determination corresponding to the plane is simplest to analyze; its

gradient is constant, so the group velocity is a constant function of

(a,*). The plane thus represents a translatory motion which is similar

to that found in solutions of the equation ut + ux + uy = 0.

In the example illustrated here the group velocity points into the spatial

domain x ) 0.

The cones 9 are more complicated than the plane. In Figure 4.2 we

show cross-sections of these cones for fixed ) 0 and fixed E ( 0. The

directions of group velocity are indicated by the solid arrows; the group

velocity is grad (-c) C- - T- ' so the direction of this velocity

is opposite the direction of most rapid increase in - (a.w). These

directions are orthogonal to the level sets shown in the Figure. In this

picture the group velocities are different from the phase velocities, since

the latter always point along lines which pass through the origin.
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Figure 4.2. Cross-sections of s for fixed

In parts (a) and (b) of Figure 4.2 the points A,B denote the points
(a, ., E) corresponding to group velocity which is tangent to the

boundary z - 0. The relevance of these points will be discussed below and

in the next sub-section. We now explain their locations. The vertical

coordinates of points on Q are given by sums of vertical coordinates of

the plane and those of a right circular cone. (See (4.17)) At each point

A or B the gradient of the right circular cone is denoted by the dotted

arrow C, which points along a line passing through the origin. The

gradient of the plane is indicated by the dotted arrow P. Their sum lies

along the same line as the group velocity.

The cones S1 correspond to the propagation of sound waves and gravity

waves, respectively, for the linearized Buler equations and the linearized
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shallow water equations. In the analogous picture for Maxwell's equations Q

would correspond to the propagation of electromagnetic waves.

We now mention some algebraic aspects of the discussion given above.

We have denoted by r the set of all (N,.) corresponding to points on

i.e.. r is the projection of 0 onto the (*,) space. For the example

illustrated here the cones Q determine two values of a for each (wN.)

in the interior of r. The above discussion implies that each

determination of a - a(w,) on each component of r can be

associated with notion into or out of the spatial domain x ) 5.

Furthermore, some remarks made in the introduction to Section 4 imply that

for each such a, the number ia is an eigenvalue of M(w,i). (See

(4.6)(a)) This suggests that one can identify incoming and outgoing

portions of the solution by diagonalizing M(wi.). This subject will be

addressed in the next sub-section. As part of this discussion we point out

that N(w,i1) is defective when (w,) corresponds to tangential

incidence. In Section 4.4 we describe a process by which the incoming and

outgoing portions of the solution are labelled algebraically in the theory

of well-posedness.

We now relate the earlier discussion of group velocity to the theory of

propagation of singularities. The letter is mainly a discussion of the

propagation of high-frequency portions of the solution, since the smoothness

of a-function is governed by the rate of decay of its Fourier transform.

Denote (.y,t) by z and (o,w.) by 4 , and let p(z°) denote the

determinant in (4.5). The singularities in the solution propagate along

bicharacteristic curves, which are curves (z(r),4(v)) satisfying the

Hamilton-Jacobi equations

(a) grad4 p(z. )

(4.25) (b) = -grad z p(z.)

and the constraint p(z) - 0. (e.g., Nirenberg [17], Taylor [26]) The

curve z(v) denotes the path of propagation In the (xyt) space, and the

curve 4(r) records any frequency shifts which take place during the

propagation. For a discussion of ray theory in a more applied setting, see.
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e.g., Whitham [311.

Equation (4.25)(a) says that the direction z is parallel to

grad, p(z.). i.e., is orthogonal to the level set (C:p(zC) - 0). This

set is the characteristic variety defined by (4.5); an example is graphed

in Figure 4.1. It then follows that the projection of i onto the spatial

variables (x.y) is perpendicular to level sets of the type graphed in Figure

4.2. That is, the direction of propagation lies along the same line as the

group velocity. One can check easily that the direction of propagation is

the direction of the group velocity, rather than the exact opposite; for

example, on the upper cone ( 0 > 0) in Figure 4.1, an increase in t

corresponds to a movement of (xy) toward the center of the cone.

4.3 Properties 21 MNw,iC)

In this sub-section we use the structure of the characteristic variety

to describe some properties of the matrix M(,i) = A-1(iI - I iwjBj).

(See (4.3)) We will deal mainly with the diagonalizability of this matrix and

the occurrence of purely imaginary eigenvalues. A noted in the previous

sub-section, the behavior of M(w,iC) is closely related to the problem of

identifying the incoming and outgoing portions of the solution.

The matrix M(w,s) arises from the use of Fourier and Laplace

transforms with respect to y and t, respectively. Before we proceed with

the discussion of M(u,i ), we first mention why one would transform in

(y,t) rather than in some other set of variables.

First, there can be a problem with transforming in the normal variable

x. Such a transformation would require information about the solution away

from the boundary x - 0. and this does not seem appropriate in a discussion

of boundary conditions. This difficulty can be avoided by transforming in

(y~t).

A second reason is related to the problem of identifying incoming and

outgoing modes. We have already noted that the eigenvalues io - ia(m,0

of N(w,iC) are very useful in this regard. On the other hand, if

we were to transform (3.1) with respect to (x.y), say, then the result would

be
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(4.26) ut(60,w.t) = (iA + iwjBj)u

(if C = 0. F - 0). The properties of solutions of this system are governed

by the eigenvalues iC of ieA + jiW Bj. Unfortunately, the

discussion in Section 4.2 implies that various incoming and outgoing modes

are mixed together in certain determinations of iC as a function of

(a,w). These determinations are associated with the cones Q. It thus

does not seem possible to accomplish the desired separation by studying the

transformed equation (4.26).

Te now discuss the eigeuvalues of M(w,i). We recall that if ia

is a purely imaginary eigenvalue and z is a corresponding eigenvector,

then

(4.27) iez = A-(iI - 7iwjBj)z,

or

(4.28) i~z = (icA + 1iwjBj)z

According to remarks made in the introduction to Section 4, the symbol

(4.29) iaA + iwj B

has purely imaginary eigenvalues and a complete set of real eigenvectors.

This fact will be exploited in Proposition 4.1.

In general, the number of purely imaginary eigenvalues of M(w.iK)

may vary with the position of (w,Q). In the case of the shallow water or

Euler equations there are two eigenvalues ia associated with the double

cone Q, when (w,) is in the interior of F. (See Figures 4.1 and 4.2)

As (w,C) approaches the edge of r, these eigenvalues coalesce, and as

(w,&) leaves r these eigenvalues leave the imaginary axis. They cannot

be purely imaginary, since for any imaginary eigenvalue iv the point

(V,v,C) must lie on one of the surfaces in Figure 4.1.

In fact, for (w,&) outside r these eigenvalues must have the form

p + ic. where p is real. The eigenvalues of the real matrix

37



-iMtw, i4 - A-I(41 - wj)

are either real or come in complex conjugate pairs o ± ip. When we

multiply by I the result is ±p + io.

For the Euler and shallow water equations there is also a value io

associated with the plane illustrated in Figure 4.1. In many cases there is

no difficulty with expressing o as a function of (w,). The plane

satisfies the equation

4 -- Ou - WV

(see (4.17)), so io can be written in terms of (w,O) whenever u # 0.

This condition is equivalent to requiring det A A 0, where A is the

coefficient of w. in (4.16). In Section 3.1 we assumed that this

condition was satisfied, and we used it to write M(w,s) - A-1 (sl - 1 iwjBj)

(e.g., (3.9)).

The assumption det A 0 0 has a physical interpretation. The vector

field (u,v) associated with the system (4.16) is the velocity of the

flow about which the system has been linearized. If A is to be

nonsingular, then this flow cannot be zero and cannot be tangent to the

boundary x = 0. In Figure 4.1(a) the plane cannot be horizontal and cannot

have a gradient which is parallel to the w-axis. The assumption dot A 0 0

is thus not always valid for the shallow water and Euler equations.

In addition, it is never valid for Maxwell's equations. This can be

seen from the representation (4.20) for the system or from the formula

(4.21).

We now make some remarks about the diagonalizability of M(w.i4.

Suppose that the characteristic variety has a cone * and suppose that for

(w,*) in r there is no difficulty with solving for values of ia

associated with surfaces other than R. There will be no need to make any

assumptions regarding the multiplicities of any of the eigenvalues. The

following Proposition may be contrasted with Proposition 3.2. which

describes M(.,s) for Re a ) 0.
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Provosition 4.. If (w,i) is in the interior of r , then M(w*iK)

SA-l(i - EiajB) has purely imaginary eigenvalues and a

complete set of real eigenvectors. This is not the case if (w,) is

outside r . The eigenvectors can be determined from those of the symbol

(4.29). ivA + IiwjBj.

Proof. Equations (4.27) and (4.28) show that the eigenvectors of

(4.29) are also eigenvectors of M(w.iQ). We know that (4.29) has a

complete set of real eigenvectors corresponding to fixed (a,w) and

various eigenvalues iC. We want to show the same thing for M(w,i), for

fixed (w,v) in r and various eigenvalues io.

Suppose that (N,C) is in 1 , and let a.... ok denote

the eigenvalues of M(Noi.). For each j choose a basis Ej

for the eigenspace of iajA + jib Bj corresponding to the

eigenvalue i. We are allowing for the possiblity that (4.29) might have

multiple eigenvalues. The elements of Ej are also eigenvectors of

M(ui ) corresponding to the eigenvalue ia.. We claim that the union
J

of the E is a complete set of vectors. There are clearly enough of

these vectors. The fact that they are linearly independent follows from an

argument which is essentially the one which shows that eigenvectors

corresponding to distinct eigenvalues are linearly independent. This

completes the proof.

We make some comments about the behavior of M(woIEJ when (w.)

lies on the edge of r. According to Figures 4.1 and 4.2. this case

corresponds to group velocity which is tangent to the boundary, and it also

corresponds to the coalescence of different values of a(w.,). In

addition, as (w,&) approaches the edge of r , various eigenvectors of

M(w,iW) associated with the two determinations of ia(wA,) come

together, so that M(wiQ) fails to have a complete set of eigenvectors.

In the case of the Euler and shallow water equations, M(w,i4) acquires a

2 x 2 nondisgonalizable block. In systems for which 0 corresponds to

multiple eigenvalues, the nondiagonalizable block can be larger. This
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occurs, for example, with Maxwell's equation. (In this case it is not

possible to write M(w.s), since dot A - 0. but there is an analogous

matrix which is used. See Section 1 of Majda and Osher [141.) The

defective behavior of M(w.iE) causes major difficulties in the theory of

well-posedness. (See Section 6)

Proposition 4.1 and the accompanying remarks have obvious extensions

to more general cases, e.g., where the characteristic variety has several

different cones. In any system the major point of interest is the behavior

of M(u.i when the eigenvalues ia coalesce, that is, at tangential

incidence. The examples mentioned here contain this principal difficulty.

For the sake of definiteness and clarity, we orient many of the discussions

in the remainder of the paper to these examples.

4.4. A algebrain labelling g incoming n outgoing modes

In this section we discuss a process by which incoming and outgoing

modes are labelled algebraically in the theory of well-posedness. We

consider the elementary solutions

(4.30) eic1 + iN'y + ict

of (4.7) which have been discussed extensively in previous sub-sections. We

analyze what happens when the dual variables iE and ia are perturbed

to the complex values s - n + iC and K = p + ia, respectively, so

that the resulting form

(4.31) eKx + iw'y + at

is also a solution of (4.7). The sign of Re K , when Re a ) 0, will

indicate whether the mode (4.30) corresponds to group velocity pointing into

or out of the spatial domain x ) 0. This labelling is used in a

fundamental manner in the theory of well-posedness. (See Section 5) The

relationships between the modes (4.30) and (4.31) will be discussed more

extensively in Section 5.3.
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The labelling process depends on an assumption that K and s are

invertible analytic functions of each other for q near zero. This

analytic dependence is found in the examples which have been discussed

earlier. (See (4.17) and (4.21)) However, it fails for points (a,w. )

on the cones S when (w,C) is on the edge of r (i.e., tangential

incidence). It also fails for points corresponding to the plane in Figure

4.1 when the plane is horizontal. This situation is encountered when the

boundary is characteristic.

Pronosition 4.2. Suppose that K and a have the analytic

dependence mentioned above, and suppose that (4.30) is perturbed so that

Re a > 0. If (4.30) corresponds to group velocity pointing into the spatial

domain x > 0. then K is perturbed so that Re K ( 0. If the group

velocity points out of the domain, then Re K > 0.

Proof. The vector group velocity is (- to, -VE)(see (4.23)).

Incoming and outgoing modes thus correspond to /8OIr negative and

positive, respectively. The former case is illustrated in Figure 4.3; the

solid arrows indicate that perturbations in and a have opposite signs.

P

s-plane K -plane

Figure 4.3. The case ( 0.

Because of the analytic dependence, the complex derivative
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dC exists and is equal to * " Perturbations in K and s thus have

a ratio which is independent of direction. In the case of Figure 4.3 these

perturbations are negatives of each other, so that Re K ( 0 when Re a ) 0.

This is illustrated by the dotted arrows. Similarly, if (4.30) corresponds to
&ds

an outgoing group velocity, then >. > 0. In this case dK > 0. and

Re a ) 0 implies Re K > 0. This completes the proof.

The above proof resembles an argument given by Taylor [26,p 2021 in a

discussion of reflection of singularities. A similar argument was also

given by Trefethen in a study of the relationship between group velocity and

the stability of boundary conditions for finite difference approximations

(e.g., [27], [291).

We should note that there exist modes (4.31) which cannot be obtained

by perturbing (4.30). When Re a 0 these approach the form exp(Kx +

iwly + it), where Re K A 0. Such modes are found for (w,&)

outside r. (See Section 5.3)
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5. Interret!q.n g o UK Uniform [r.ei Condition

In this section we discuss some effects of the ''Uniform [reiss

Condition'' (U.K.C.). This is the condition (3.20) which was introduced in

Section 3.3 and which is sufficient to assure the well-posedness of the IBVP

(3.1),(3.3).(.4). In this section we show that the U.K.C. can be regarded

as a solvability condition; it enables one to solve for certain

"incoming'' dependent variables in terms of ''outgoing'' variables and

boundary data. The U.I.C. is used for this purpose in proofs of

well-posedness. The above interpretation is an analogue to the situation in

one space dimension.

The present discussion is based on the use of Fourier transforms and

Laplace transforms. The conclusions reached here are therefore limited to

systems which have constant coefficients. Analogous conclusions may be

expected for the high-frequency portions of solutions to

variable-coefficient problems, since the coefficients appear nearly constant

to waves whose frequencies are sufficiently high. This principle is

contained in the theory of propagation of singularities (e.g., Nirenberg

[17], Taylor [26]) and in discussions of "slowly varying" wavetrains in

the applied literature (e.g., Whitham [31]). However, the

variable-coefficient case is technically more complicated, and it may be

particularly difficult near tangential incidence. (See Section 5.3)

In any case, the properties of the high-frequency portions of the

solution are of major interest; estimates involving L2 norms and

Sobolev norms (e.g., (3.5)) play a major role in the theory, and these norms

are governed by behavior at high frequencies.

In Section 5.1 we give an outline of some effects of the U.K.C. This

discussion is based on the system (4.2)(s) of ordinary differential

equations which was obtained through the use of Fourier and Laplace

transforms. The structure of the solutions of this system is discussed in

Section 5.2.

In Section 5.3 we discuss in detail the nature of the ''incoming '' and

''outSoing'' modes and how these modes are affected by the U.K.C. The case

of tangential incidence is included in this discussion. The development in
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this sub-section is given in terms of the shallow water equations and the

two-dimensional Euler equations.

In Section 5.4 we discuss some weak forms of well-posedness which can

be encountered if the U.K.C. is not satisfied completely.

5.1. General remarks

In this sub-section we outline some effects of the U.K.C. The

discussion is based on the transformed problem (4.2),

(a) x(x.w .s) - (w.s) - AlF(zpe.&)

(5.1)

(b) I(ows) = SOII + j(w,s),

which was derived earlier.

In order to study the solutions of this problem we transform N to

block form. Let Q(os) be a matrix such that

oi 0(5.2) Q71NQ - (~
The transformation is chosen so that the eigenvalues K of X, and

M2 satisfy Re K ( 0 and Re K > 0, respectively. The dimensions

of 1K and 2 are thus k x k and (n-2) z (n-P.). (of.

Proposition 3.2)

In the theory of well-posedness a great deal of attention is paid to

finding block forms which are smooth functions of (w,s). We will not

worry about this now. In (5.2) the matrices Q,KI , and M2 are not

determined uniquely; this will be discussed below.

The system (5.1)(a) can be written as

or
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(5.3) v^X(x.*.s) - + G

0

where ¢ - 01^. For convenience we partition Q into vectors

(vl T ... #)T and v II = (V,+l .... ;)T

The solutions {Vl .... and {V+l*.... n} can be

constructed from functions of the form eKX , where the values K are

elsgenvalues of Mi and M2, respectively. (See Section 5.2) The

solutions j of (5.1)(a) thus correspond to solutions of the partial

differential equation (3.1) which are made up of modes

(5.4) • K x + iw'y + st

If I jj 5 . then Re K ( 0. Otherwise, Re K >0. The labelling

process of Proposition 4.2 suggests that the modes (5.4) may be associated

with incoming waves if Re K ( 0 and outgoing waves if Re K ) 0. We may

therefore think of vi,....v as "Incoming'' components of the solution

and , n as "outgoing" components. This identification is

developed in greater detail in Section 5.3. The case of tangential

incidence is included in this discussion.

The blocks in (5.2) are not determined uniquely, since one can perform

similarity transformations on V, and M2 individually. These would

amouit to linear changes of variables among [Vl .... ;k) and (V,+lI"...

Such transformations do not alter the classes of incoming and outgoing

solutions.

To now transform the boundary condition (5.1)(b),

[l,-S] (0,w~s) - (~)

Since v 01 u, this can be written as

(5.5) [I,-S]Q = j (for x = 0)
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Lot ql0...qu denote the columns of Q. and let

Q -, .l... qZ]

QII [qJq 1 l,...qn]

The boundary condition (5.5) is thus

[I,-SI[Q'oQI] - ,

or

[I.-SJI 1Y 1 
= -+I,-s1Q11'$1

This will be denoted by

(5.6) N(w.s)'I - P(ws) 11 + j (for x - 0)

It is now possible to see that the U.K.C. can be regarded as a

solvability condition. First suppose that ql .... qZ are orthonormal.

so that N(w,s) is a matrix (o,s) of the form (3.19). In

this case the U.K.C. says explicitly that Idet N(w.s)I _ 6 for Re a > 0,

w sIRm . The linear system (5.6) can thus be solved for

vZ i.e., we can solve for the ''incoming' variables l,.... in

terms of the ''outgoing'' variables v+...n and the boundary

data g.

The same conclusion can be reached, in at least many cases, if

q,"...qq are not orthonormal. Some arguments given in Section 3.3 show

that if the qj(w,s) are piecewise continuous in (w,s) and

homogeneous of degree zero, then the U.K.C. implies that Idet N(N.s)

is bounded away from zero. The linear system (5.6) is thus solvable.

In the following discussions we assume that the vectors qj(ws) are

homogeneous. This is not a major restriction, since any scaling of the

variables (w,s) in (5.2) can be confined to K and the blocks M

and K2. Also note comment (3) in Section 3.3.

The solvability condition contains a uniformity which is of interest.

Let • = + iC, fix vi > 0, and consider the limit lad2 + IcJ2 1 -.
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Because Idet N(*.s)l .2 6 for all (ws) with Re s ) 0. the

matrix N(ws) is uniformly Invertible as the frequencies tend to infinity.

The significance of this becomes apparent when the U.K.C. is compared

with the requirement (3.18). dot N(u,s) 0 0 for Re s ) 0. which was

shown to be necessary for well-posedness. For reasons of homogeneity,

N(w.s) - NNC.''). where

(W,'s)(w', s')

(1612 + IS2)
1/2

(See Figure 5.1) The condition (3.18) requires dot N(w's') # 0 for

Re s' ) 0. but it allows the possibility that dot N(w',s') may tend to

zero as Re s' 0.

(w,s) =(wn+i&)

Figure 5.1

That is, for any fixed 1 > 0. NC.,s) may become more and more singular

as 1wI2 + 1&12  -. This may have major effects on the

solution ;I of the system (5.6); unless the right-hand side of (5.6)

satisfies special constraints, the "incoming" components v1 may be

large relative to and ^ for large frequencies. This corresponds

to a loss of derivatives at the boundary, or ''weak" well-posedness. This
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will be discussed in greater detail in Section 5.4.

In Section 3.1 we assumed that the boundary condition has the special

form (3.4),

uI - Su"I + $ (for z=Q 0)

The arguments given in the present section make it possible to justify this

assumption. Suppose that we use a more general linear boundary condtion

(S.7) Bu(Oy,t) - h(y,t),

where B is a constant matrix. Apply Fourier and Laplace transforms with

respect to y and t, respectively, and write the result as

BII(O0,w,s) + BIIiI 1  h(w.s)

Here BI and B II are matrices whose columns are the first i and

last n - X columns of B, respectively.

Now suppose w - 0. i.e., consider waves having phase velocities

which are normal to the boundary. In this case M(a,s) - sA71 . Since

A is diagonal and has the form (3.2), one can identify fi as the

"incoming" portion of the solution. If we are to be able to solve for

I in terms of II and h. then B I must be an invertible

square matrix. Thus BI  is Z x L, end (5.7) can be written as

u- -(BI)-IBIulI + (B)-lh.

This has the form (3.4).

5.2. Solutions gi JhI system (5.1).

In the previous sub-section we used modes (5.4) for which Re K ) 0,

i.e., which grow exponentially as z increases. This may appear totally

unreasonable, since these modes do not have finite energy on the interval
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0 C z ( a. In addition, none of the modes (S.4) satisfy the homogeneous

initial condition which was used to obtain (4.2)(a) ( or (S.l)(a)). In

order to make the use of such modes seem a little more legitimate, we

therefore derive and discuss some representations of solutions of (5.1). It

will become clear that the U.K.C. has a natural interpretation in terms of a

two-point boundary value problem associated with (5.1).

We first justify a remark made at the beginning of Section 4. There we

assumed that the effects of the initial data f in the IBVP

(3.1),(3.3),(3.4) can be absorbed into the forcing term F. This is done in

order to facilitate the use of the Laplace transform with respect to t.

The preliminary transformation can be accomplished by a procedure used by

Rauch [21] in a study of the regularity of solutions of the IBVP.

Suppose that the initial value f vanishes identically in a

neighborhood of the space-time corner z - 0, t 0 0; and suppose that the

pure initial-value problem for (3.1) is well-posed. There then exists a

function w such that

wt - Awl + Bj

w(z,y,0) = f(x~y)

(We are assuming C - 0). Because of the finite propagation speed associated

with hyperbolic systems, there is a 6 > 0 such that w(0,y,t) - 0 if

t I6. Choose h g C'OR) so that h(O) -1 and h(t) - 0 for t > 6. t
Let u be a solution of (3.1),(3.3),(3.4); and let v(x,y.t) u - h(t)w.

It follows that v satisfies

vt M AVI + Bi Oyj + (F - h(t)w)

v(zyO) - 0

vi SvII +, for x =0.

This is the form which was used to obtain (4.2). By a re-labelling, we may

continue to denote the forcing term by F(izy.t) and the solution by

u(z,y,t). Because of the finite propagation speed, we may assume that

F(x,y.t) has compact support with respect to z and y.
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The system (5.l)(a) can be solved by studying the block version (5.3).

We assume that M, and M2 are themselves block diagonal,

where each block is triangular and is associated with a single eigenvalue.

If necessary, Ml and M2 can be transformed to this form by linear

changes of variables among i....f, and V+lo .... ;no respectively.

Under these assumptions each equation in (5.3) has the form

dw
(a) -K =v + (z)

dz
(5.8) or

(b) dx Kw+Icjwj +
dx

In (S.8)(b) the wj are solutions of equations which can be solved

independently of (5.8)(b). We seek solutions of (5.4) which are in

L2(0o.), since we are ultimately considering solutions of the partial

differential equation which satisfy energy estimates like (3.5).

We first consider the case Re K ( 0. When one multiplies (5.8)(a) by

the integrating factor exp(-Kx) and integrates, the result is

(.5.9) w(X) eKVw( 0 ) + f e0K(x-zH(z)dz .
0

The solution w is in L2 (0,-), since Re K ( 0 and B has compact

support. The first term in (5.9) represents the propagation of the initial

data w(0); and the second can be regarded as a superposition of pulses,

each "of which appears at a point z and is then propagated by the natural

frequency in the problem. The more complicated equation (M.8)(b) can be

treated in a manner which is similar to the above.

When Re K ) 0, the representation (5.9) is not appropriate. In this

case the function w in (5.9) would be in L2 (0.-) only if the

initial value w(0) and the forcing term H satisfy a special relation.

Instead, one should impose the couditior w(s) - 0 as x + -. Under this

assumption the solution of (S.8)(a) has the representation

(5.10) w(l) = jx eK(zz)H(z)dz

so



An analogous formula can be found for (5.8)(b).

The system (5.3) (or (S.l)(a)) should thus be associated with a two-point

boundary value problem, if the solution is to be in L2 (0,m). The

components ;Io corresponding to Re K ( 0. should be prescribed at x = 0;

and the components ;1. corresponding to Re K > 0. should be set to

zero at infinity.

We now show that these conclusions make sense in physical terms. The

solutions w in (5.9),(5.10) can be factored into the form

(5.11) w(x) - eaK c(x),

for suitable c(z). By inverting Fourier and Laplace transforms, one can

see that the solutions of the original partial differential equation are

thus made up of functions

(5.12) e + IWy + st c(x)

An inspection of the formulas (S.9),(5.10) reveals that these functions are

superpositions of puises which are propagated by modes of the form eXp(KX +

iu'y + st). According to the labellirg process suggested by Propostion

4.2, the cases Re K ( 0 and Re K > 0 correspond to ''incoming''

(rightward moving) waves and ''outgoing" (leftward moving) waves,

respectively.

In the two-point boundary value problem the ''leftward moving' (Re K > 0)

components ;II are set to zero at infinity. This is physically

reasonable, since leftward moving waves can arise only when they are

stimulated by the inital data or by forcing in the differential equation.

The process outlined at the beginning of this sub-section incorporates both

of these effects into the "forcing" term H in (5.8). In the case

Re K > 0 the envelope c(x) in (5.11) and (5.12) has the form

(5.13) O(x) zZS(z)dz
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(see (5.10)) This envelope can be nonzero only when x is within the

support of B.

"Rightward moving'' (Re K ( 0) waves may be prescribed at the boundary

x - 0, and in the interior they may also be stimulated by forcing or by the

initial data. Both of these effects are represented in the formula (5.9).

In order to properly define the 'Incoming'' components at x - 0, it is

necessary to impose a suitable boundary condition. The U.K.C. describes a

class of such conditions; if a boundary condition satisfies this

criterion, then it has the effect of expressing the ''incoming'' modes in

terms of ''outgoing'' modes and the boundary data (the function g in

(5.1)).

The remarks in this sub-section suggest an effect of the labelling

process of Proposition 4.2. The cases Re K ( 0 and Re K ) 0 force one

to make particular choices for the boundary conditions for the system of

ordinary differential equations (5.1)(a). The labelling guarantees that

these choices are physically reasonable.

5.3 Structure of ''incomina" and 'Woutgoin" nodes: behavior &I

tantential incidence

In Proposition 4.2 and in Section 5.1 and 5.2. we identified modes

exp(Kx + iw-y + at) as 'incoming' or ''outgoing'' portions of the

solution when Re K ( 0 and Re K ) 0. respectively. (Here Re a > 0.) In

the present sub-section we examine more closely the nature of these modes

and the validity of the above labelling. In particular, we discuss the

structure of the modes corresponding to tangential group velocity and the

effects of the U.K.C. on these modes. We also mention the strictly

decaying modes which occur when (w,) j r . The present discussion

is given in terms of the linearized shallow water equations and the

linearized two-dimensional Euler equations.

In this sub-section we consider only the solutions of the homogeneous
au

system (4.7), ut - Au, + E Bj ay . In the previous sub-section we noted that

these solutions can be used to build up solutions of the more general

inhomogeneous system (3.1) (with C = 0).
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The idea behind Proposition 4.2 is to perturb an oscillatory solution

exp (iox + iwy + i~t) of (4.7) to a solution of the form

(5.14) + iwly + at

where K p + io and a =q + iC. The sign of Re K *when Re a )0.

indicates whether the mode (5.14) Is "Incoming" or "outgoing"'. The

Proposition requires that K and a be invertible analytic functions of

each other. As noted earlier, this excludes the case of tangential

incidence. We discuss such modes below, but we first consider the analytic

case.

The mode (5.14) can be written as

(5.15) PI + lit eiax + iwy + iF~t

We regard this as an oscillatory mode which is modulated by the amplitude

function A(x.t) -exp (pi + qit).

Proposition 5.1. If the oscillatory part of (5.15) corresponds to

group velocity which is not tangent to the boundary, then (5.15) approaches

the configuration

1 (x-vt) iax + iw- y + i Ct
(S.16) e-V e

as 1.1 + M - - for fixed ik > 0. Here v is the x-component

(e., normal component) of the group velocity.

Proof, The exponent in the factor A(xzt) in (S.15) can be written as

Alil + t). The ratio liis equal to P-:. where P1 ,

and Iq Iwl here C (w.0) and IC12 _ twI2 + 2. (This projection

is similar to that of Figure 5.1.)

Since p1 0 when T1' -0 in the present case,
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p' A ' dp ' J

The approximation becomes accurate in the limit il' 0. i.e.. when 't > 0

is fixed and led + 10 - -. Because of the analytic dependence.

dp: dK do 1
dv' q 0=0 ds d& v

(See (4.22)) The exponent in A(x.t) is thus

M(qx+t) (- x +t) =- (z- vt)

The Proposition then follows.

The mode (5.16) is an oscillatory wave which is modulated by an

exponential envelope which moves at the normal component of group velocity.

If v > 0. then (5.16) decays as x increases. As the group velocity

approaches tangential incidence, i.e., as v - 0. the mode decays more and

more rapidly, so that the effects of the mode are concentrated near the

boundary.

If v ( 0 (i.e., Re K > 0), then the modes (5.14), (5.15) are

''outgoing'', i.e., leftward moving. According to the remarks in Section

5.2, modes of this type are stimulated in the interior by forcing and the

effects of initial data. The effects of such stimulation decay rapidly to

the left when v ( 0 and lvi is small (cf. (5.13)).

We now consider the case where the oscillatory part of (5.14), (5.15)

has Sroup velocity tangent to the boundary, i.e,, v - 0.

The discussion in Section 5.1 suggests the effects of the U.K.C. on

these tangential modes. In the earlier discussions the modes (5.14) (5.15)

have been regarded as ''incoming" when p - Re K ( 0. According to the

remarks in Section 5.1, the U.K.C. says that the boundary condition must

give the values of the portion of the solution corresponding to Re K ( 0.

In the present case, this means that the boundary condition must prescribe

the behavior of waves moving tangent to the boundary. It is therefore of

interest to study the structure of such modes. The main conclusion,
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Proposition 5.2, will be useful in the discussion of weak well-posedness

given in Section 5.4.

In the following discussion of wave propagation near tangential

incidence, we consider only the case of constant coefficients. When the

coefficients are variable, major complicationscan arise. For example, the

Hamilton-Jacobi equations (4.25) imply that small variations in the

coefficients can cause small changes in frequency for a given mode. If a

point (q(v).w(v),(v)) is confined to 0 , and if (N, ) is near

the edge of r, then the mode can switch quickly from "incoming'' to

"outgoing'' as the paramenter v is varied.

Substantial work has been done on the propagation of singularites

(i.e., high frequencies) near tangential incidence for various types of

equations. The existing theory is quite complicated. See, e.g., Taylor

(261 and the references given therein.

We now discuss the form of (5.14),(0.15). Suppose that (a.w.E) =

(0ao,% )  is on 0 and (Eo, ) lies on the edge of r , so that
the oscillatory part of (5.14)(.15) corresponds to tangential group velocity.

(cf. Figures 4.1 and 4.2) The arguments of Propositions 4.2 and 5.1 are

not valid in a neighborhood of such a point, since K and s are not

analytic functions of each other. In the case of the shallow water and Euler

equations, there is a square root singularity in K as a function of a.

(cf.(4.O7)) This is suggested by Figure 5.2; this is a cross-section of the

cone Q corresponding to fixed w wo. In particular, the real

partb of K and a satisfy a relation

for small 0 > 0. Here R is a constant.
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0 = Im K

Figure 5.2. Cross-section of 9 for fixed w -w o

Prolneoition 5.2. Suppose that the oscillatory part of (5.15)

corresponds to tangential group velocity (i.e., v - 0), and suppose that the

singularity between K and a has the form described above. The envelope

A(it) in (5.15) is then approximately equal to

(5.17) exp [RA' C. I (x + R 01]

when the ratio I1 is small.

Proof. As in Proposition 5.1. the envelope A(xt) has the form

exp [i(R- I + t)]

In the present case p' $ RA -7 when v' is small. Since i' l jj.
A(xt) can be written as

R
A(x.t) - exp [A(4r. I + t)]

- sp RRM I + ntI

This is equivalent to (5.17). This completes the Proposition.

Now suppose R < 0, i.e., Re K < 0. In this case the mode (5.15),
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A(xt) exp (ix + iw'y + i~t),

decays rapidly away from the boundary. From (5.17) it is apparent that the

rate of decay increases without bound as kI with 4 ) 0 fixed.

This situation contrast* with the earlier case v 0 0. where the limiting

configuration (5.16) is reached.

The behavior in the present case corresponds to results from the theory

of propagation of sinsularities. In the latter case it is known that as the

frequencies tend to infinity, the corresponding portions of the solution

follow the bioharacteristic curves (see (4.25)) better and better. In the

present case the directions of propagation lie along the boundary.

Up to now we have considered modes (5.14), ep (KI + iwy + st) which

are obtained by perturbing purely oscillatory modes exp(iax + im-y + itt).

Such modes correspond to (*,E) a r or points (e~w ) on the plane

in Figure 4.1. However. there exist modes (5.14) which do not fit this

description. These correspond to (*,C) in the exterior of r . and for

Re a - 0 they have the form

(5.18) 0x + iWy + it

One may object to labelling such modes as "incoming' or ''outgoing"

according to whether Re K ( 0 or Re K ) 0. since they do not correspond

to the oscillatory propagating waves mentioned above. However, the U.N.C.

still requires that the boundary conditions prescribe the behavior of such

modes when Re K ( 0.

5.4 Jj" well-vosedness

In this sub-section we discuss some weak forms of well-posedness which

can be encountered when the U.K.C. is not quite satisfied.

In Section 5.1 we considered the boundary condition (5.6).

( ) =p(ws)v +
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The U.K.C. (3.20) implies that this system is uniformly solvable for

as Im. + I - - with q ) 0 fixed (of. Figure (5.1)). At the end

of Section 5.1 we remarked that the weaker necesssary condition (3.18),

det N(a,s) # 0 for Re a > 0, allows the possibility that det N(*.s)

may tend to zero as Re a - 0. In oases where this occurs, the left side

of (5.6) becomes singular as 61u + kI& -- with vj > 0 fixed, so that
I could be large relative to v and j at large frequencies.

The incoming components would thus be less smooth than g and the other

components, i.e., we ''lose derivatives'' at the boundary. In energy

estimates like (3.5), derivatives of data would appear on the right aide.

Whether this phenomenon actually occurs depends on the structure of the

right side of (5.6). For example, it would not occur if j - 0 and if

P(w,s)vII  stays within the range of N(w,a) in some suitable

sense. An appropriate characterization is that the ratios in Cramer's rule

stay bounded as Re a 1 0. However, the loss of derivatives must occur if

P(w,*)v I moves out of the range of N(w,s) or if arbitrary g

are considered. The degree of the derivatives which are lost depends on the

order of the pole in Cramer's rule. An example will be discussed at the end

of this sub-section. (See Proposition 5.3)

The above phenomena have a physical interpretation. Suppose g - 0, so

that the boundary condition (5.6) is a reflection condition, i.e., the

''incoming' modes I are reflections of the "outgoing" components

vII. The nature of the reflection is governed by the structure of the

boundary condition. When derivatives are lost, the amplitudes of the

reflected and incident waves have ratios which tend to infinity as u +
J . That is, the reflection coefficients tend to infinity. In the

other case mentioned above the reflection coefficients remain finite.

The loss of derivatives can cause particular difficulties when the

spatial region is a bounded domain rather than a half-space. In this case

waves can reflect back and forth between various portions of the boundary,

so that more and more derivatives are lost as time progresses.

Trefethen [271, [291 has studied phenomena analogous to the above in

connection with the stability of finite difference approximations. He

emphasizes the distinction between the cases of finite and infinite
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reflection coefficients, and he describes how these affect the practical

nature of difference methods. In particular. he obtains growth rate

estimates for some mild forms of instability.

The case of weak well-posedness is sometimes associated with the term

"generalized eigenvalue". Recall the eigenvalue problem (3.12).

(a) 84(x) .AAx + (I ivjj)4 ; > 0

(5.19) (b) 41(0) - $4II(0)

(c) 4 a L2(0,-)

If dot N(us) - 0 for some (.) with Re s - 0. then a solution

4 of (5.19)(a)(b) exists. However, it may fail to satisfy the boundary

condition at infinity, 4 a L2(0,,), since the eigenvalues of

(w,s) can be purely imaginary when Re a - 0. (See Section 4.3) If

this is the case, then the value a in (5.19)(a) is said to be a

'gSeneralized eigenvalue.' The solution 4 does happen to be in

/2(0,.) if (*,) a r and if 4 is associated with the

elenvalue K of I(e.s) for which Re K < 0. (cf.($.18))

We now describe some examples of weak well-posedness. We mainly

consider some examples which were discussed by [reiss [111 from a point of

view which is different from the one expressed above. He studied the system

(5.20) ut 1 1 ( 11 u uI I  •aR2

Su x +4".

for x > 0, y a A, t ) 0. with boundary conditions

(5.21) uI(0,y,t) an" + g(y,t).

Here a is a complex constant.

A short calculation shows that the eigenvalues K of IUC,S) satisfy

(5.22) K2 = s2 + 0
2
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Ti
For each determination of K • the corresponding eigenvector is (C 1)

Let o denote the value of K which has positive real part, so that

-K o corresponds to the "inooming" mode. It then follows that

(1, -a -K

(5.23) N(ms) -

(See the derivation of (5.6).) If N(u,s) - 0. then

a2+ 1

(5.24) S W i ( 2a ) a

Kreiss discusses three cases where N(a•s) - 0 for Re a = 0:

(1) a - ± 1

(2) lal > 1, a real

(3) lal - 1. a not real

He constructs solutions via Laplace and Fourier transforms under the

assumption that the initial condition is u(z.y,0) - 0. For case (1) he

obtain* the estimate

f CD -2,1t Iu(,y.t)12 dt di dy

(5.2S)
-- qt (Igl2 + I 12 + aJy12) dt dy,

where o is a constant. He also obtain$ an interior estimate for u in

terms of g alone; in this case the spatial domain is given by x 2 6 ) 0.

y e1I. This estimate is possible because of the rapid decay in z of

the modes which cause trouble. In case (2) an estimate like (5.25) is

obtained, but is is not possible to obtain a stronger interior estimate. In

case (3) the situation is the same as for case (1).

In cases (1) and (2) the solutions 4 of (5.19)(a)(b) are not in

L2(0,-). Kreiss refers to the corresponding values of s as

'$eneralized eigenvalues of the first kind' and "second kind''
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respectively. Case (3) corresponds to genuine eigenvalues s.

To now interpret the above results in terms of ideas which have been

developed in the present paper. A short calculation shows that the

characteristic variety of (5.20) is defined by &2 a 02 + 02.

i.e.. its graph is like the one in Figure 4.1(a). except that the plane

is not present.

In case (1). N(us) - 0 when s - + is. i.e., It - ± is.

(See (5.24) and Figure 5.3) This means that K - 0 and that (NA) lies

on the edge of r, so that the modes in question correspond to tangential

group velocity. The breakdown of the U.K.C. at such points means that the

boundary condition does not exert good control over tangential waves.

However, the effects of such modes are confined mainly to a neighborhood of

the boundary. It is therefore reasonable to expect that a weak estimate

like (5.25) would be obtained for x 1 0 but that a stronger estimate

should be possible for x 2_ & ) 0.

The structure of the tangential modes was described in Proposition 5.2.

For the case Re K ( 0 ("inccmin$") the modes decay rapidly away from the

boundary. and the rate of decay tends to infinity as loi + hI & I .

[zeiss observed this kind of behavior in the present example.

(2) (1

(3 
(3)

~rI

(a) (b) Cross-section

Figure 5.3. Locations of points where N(.s) - 0 in cases(1).(2). and (3).
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We now consider case (2). where lei ) 1 with a real. Here

N(us) - 0 at points (ws) - (wi ) for which 1F1 ) lei. (See

(S.24) and Figure 5.3) In this case (*,&) lies in the interior of r,
so that the U.[.C. breaks down for frequencies corresponding to

non-tangential group velocity. Because the modes in question can influence

the interior, one should not expect to recover a stronger estimate by

restricting attention to the proper subdomain x 2 6 ) 0. The structure

of the non-tangential modes was described in Proposition S.1; as wi1 +

10 -" with q ) 0 fixed, these modes do not decay more and more

rapidly, but instead approach the limiting configuration (5.16).

In case (3) we have tal = 1 with a not real. Here M l ( twi,
so that (N.) lies outside r. The corresponding modes are the

strictly decaying modes mentioned at the end of Section 5.2. (See (5.18))

For these modes, Re K # 0 even when Re s - 0. Arguments similar to

those used in Propositions 5.1 and 5.2 show that when Re K ( 0, the rate of

decay Increases without bound as lul + M [ - - with n ) 0 fixed.

We omit the details. (Also see [reiss [111.) Thus, as in case (1). a weak

estimate like (5.25) is obtained 2or x 2 0, and a stronger estimate is

possible for x 2 6 > 0.

We now examine whether the boundary condition (5.21) for the system

(5.20) leads to bounded or unbounded reflection coefficients. For this

example the transformed boundary condition (5.6) has the form

(52) (1,-a) (sK) V^ -(1,.-a) (+ ) ;I+f
(5.26) 05+K

After a division and some simplification, (5.26) can be written as

z = (u~e)v II + 2~~)

where

iN(s - K +) am
(5.27) R(a,s) = - + K
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and N(,s) is given in (5.23). In order to obtain (5.27) we used the

relation (5.22). K 2= 82 + 02 .

R(ws) is the reflection coefficient which relates the "incoming"

and "outgoing" components ;I and vII This coefficient does

not play a role in the example as discussed by [reiss in [111; in his

formulation no outgoing waves can be present, since u(x,y0) - 0 and there

is no forcing term.

Proosition L.L. Let (w,.) be a point such that N(wN.) 0,

and let a - q + iE . (w and are fixed.) In case (1), IR(N,s)I

remains bounded as Re a 10. In oases (2) and (3), IR(e,s) tends to

infinity.

Proof. As Re s 0, the denominator in R(ws) tends to zero, since

NN.s) 0. The only way that R(w,s) can remain bounded is for the

numerator also to tend to zero. Thus -iwK 0 = iWK0  at the point

in question. Since w # 0 in cases (M).(2).(3) (of. (5.25)), we have

- 0. The relation K2 .5 2 + w2 ((5.22)) implies s = + iu,

which corresponds to case (1). Thus case (1) is the only circumstance

in which IR(N.,) could remain bounded.

In this case, a 1 1. For s i + i = it ± iw, R(s)

simplifies to

RNus) - - i - 04 + K0

According to remarks made prior to Proposition 5.2. K0 - ct where

• is a constant. Thus Mu.st) - 1 as Re & - 0. This completes the

proof.

The first part of the above proof illustrates the comment made earlier

about P(..,) ^I1  remaining within the range of NW,s).

We conclude by mentioning an example of weak vell-posedness studied by

Majda and Osher [14, p. 6281. Is this case the system of equations is
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Maxwell's equations. (See (4.20)) For a class of boundary conditions which

inoludes the perfect conductor boundary condition, they find that the U.K.C.

fails at frequencies corresponding to tangential Incidence. In their energy

estimate which is analogous to (3.5). they have derivatives of the solution

and of & on the left and right sides, respectively. The derivatives are

taken with respect to y and t.
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6. Remarks M or eefs of well-nosedness.

We now describe some aspects of the process by which the U.K.C. (3.20)

is shown to imply that the IBVP (3.1).(3.3).(3.4) is well-posed. This

discussion is not self-contained; our purpose is to point to some features

of the existing literature and relate them to ideas developed in the present

paper.

The main step in the proofs of well-posedness is to produce an & priori

''energy estimate'' like (3.5). Such an estimate immediately yields

uniqueness of solutions and continuous dependence of solutions on the

prescribed data fF, and g. Existence of solutions is shown via methods of

functional analysis. (See, e.g., Section 3 of Maids and Osher [14])

The energy estimate is derived with the aid of a ''symmetrizer''. This

is a pseudo-differential operator which has properties specified in, e.g.,

[reiss 10, p. 2911 and Majda and Osher [14, p.639]. Once the symmetrizer

is constructed the energy estimate is obtained readily. (e.g., [10, p.281],

[14, p.6391)

For problems having constant coefficients, the symmetrizer may be

regarded as a smoothly varying matrix function R(w,s) which acts on the

transformed problem (4.2) discussed earlier. (Here w a n, Re s ) 0)

In the case of variable coefficients, one uses a corresponding

pseudo-differential operator. For simplicity, we use notation appropriate for

the former case.

We now make some comments about the construction of R(w,s). In

commerts (3) - (5) we consider systems whose characteristic variety has a

structure suggested by Figure 4.1. We will denote by (W',s') the scaled

variables

(ec,s)

(.',s') = (','q' + i ) -

(I1I2  + 1.12)1/2

(See Figure 5.1).

(1) One first transforms M(w,s) to simple block forms by making

appropriate changes of dependent variable, as in (5.2), (5.3). (See later

65

-.- ,-



comments.) In this case the transformations must be smooth functions of

(i.a), so that the calculus of pseudo-differential operators can be used.

One then constructs a symmetrizer for the simplified system, and at the end

the effects of the preliminary transformations are incorporated into the

final symmetrizer. (Note equation (4.5) in Majda and Osher [141 and the

equation after (4.8) in Kreiss [101) The reduction to block forms receives

considerable attention in the theory (See Lemma 2.4 in [101, Assumption 1.9

in (14] Pnd Appendix B of Majda [131).

For different (.a) one may neee different block forms. The

construction is therefore done local.ly. i.e., one constructs R(ws) in

conical neighborhoods in the (a) space and then patches things together

via a partition of unity. (See, e.g., equation (4.6) in [14])

(2) The construction is straightforward when I' ) qol, for

any fixed vol ) 0. (See Section 4 of [10].) In this case the

process resembles a method for constructing Liapunov functions for studying

the stability of nonlinear autonomous systems of ordinary differential

equations (e.g., John (8]). There thus remains only the situation where

q' is in a neighborhood of zero.

(3) If (NA) is in the interior of r , and q' is near zero,

then M(Ws) can be diagonalized (in many cases). One can check that the

constfuction is very straightforward in such a situation.

When q' - 0. the diagonalizability is given by Proposition 4.1 of

the present paper. We thus consider n' A 0. For strictly hyperbolic

systems the eigenspaces E in Proposition 4.1 are all

one-dimensional, so that M(a.i) has distinct eigenvalues. Locally, one

then has a complete set of eigonvectors which depend analytically on

parameters. (See Lema 2.4 in [10]) Some more general cases are included

in the "block structure'" assumption (Assumption 1.9) of Majda and Osher

[141.

(4) For (*,) outside r , (wti) has igenvalues K for which

Re K A 0. (See Section 4.2 of the present paper.) These eigenvalues can
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be isolated into blocks and handled as in comment (2) above. The

eigenvalues of M(w,s) which are purely imaginary when Re s - 0 can be

treated as in comment (3).

(5) The main difficulty in the construction of R(ws) occurs in

neighborhoods of points where ({,g) lies on the edge of r and q = 0.

These points correspond to tangential group velocity. We noted in Section

4.3 that M(w,iO) is defective in this case.

As before, N(ma,s) is transformed smoothly to block form. The

defective block (or blocks) is handled in a complicated manner which is

described in Section 4 of [reiss [10]. The construction is also surveyed in

Appendix B of NaJda [13J. In the case of the shallow water and Euler

equations there is a single defective block of dimension 2 x 2. One may

wish to follow [reiss' construction for the 2 z 2 case.

(6) During the course of the construction it is necessary to relate

the symmetrizer to the boundary conditions. This is the point in the proof

where the U.K.C. is used; this assumption enables one to solve for

'incoming" (Re K ( 0) components in terms of "outgoing' (Re K ) 0)

components and the boundary data g. (of. Section 4 of Ireiss [10].)
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